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Abstract. The present study reviewed some of the critical pre-processing steps required for otolith shape char-
acterisation for automatic classification with heterogeneous distributed data. A common procedure for optimising
automatic classification is to apply data pre-processing in order to reduce the dimension of vector inputs. One of
the key aspects of these pre-processing methods is the type of codification method used for describing the otolith
contour. Two types of codification methods (Cartesian and Polar) were evaluated, and the limitations (loss of infor-
mation) and the benefits (invariance to affine transformations) associated with each method were pointed out. The
comparative study was developed using four types of shape descriptors (morphological, statistical, spectral and
multiscale), and focused on data codification techniques and their effects on extracting shape features for automatic
classification.A new method derived from the Karhunen–Loève transformation was proposed as the main procedure
for standardising the codification of the otolith contours.

Extra keywords: image processing, shape characterisation, shape descriptors.

Introduction

Sagittal otoliths are characterised by a high morphological
variability (Platt and Popper 1981). Their shape has a specific
form and has been used to identify species (Schmidt 1969)
and populations (Messieh 1972), as well as being applied
in taxonomical (Nolf 1985), phytogenetical (Gaemers 1976),
palaeontological (Schwarzhans 1980), and food web studies
(Frost and Lowry 1981). The development of image pro-
cessing systems has been essential for the development of
quantitative methods to describe otolith shapes (Castonguay
et al. 1991; Lombarte and Castellón 1991). However, by
using image analysis to characterise otolith shapes repre-
sents a challenging and important problem in automatic
classification.

In recent years, the development of new scientific network-
ing technologies has provided remote access to distributed
data from different resources (Cornillon et al. 2003). In the
case of otolith research, access to different collections of
otolith images has opened the possibility of new characteri-
sation and classification methods based on global and larger
otolith shape datasets (Chic et al. 2004).

In this new potential framework of data analysis, it is
important to define the general processes for characterising
the otolith images. In general, there are two approaches to
otolith shape characterisation: region-based, which deals with
the region in the image corresponding to the analysed otolith;
and boundary based, where the shape is analysed in terms of
its silhouette (Pavlidis 1977). Whereas the former is intrin-
sically a bidimensional (2D) analysis, dealing directly with
planar primitives and concepts, the latter can transform the
bidimensional operations through the unidimensional repre-
sentation of the silhouette; we refer to it henceforth as contour
characterisation. This second option is used widely because
the input data dimension is highly reduced, the instrumen-
tal requirements for contour acquisition are lower than those
required for the complete image, and most of the important
features of the otolith image can be obtained from its contour.

Contour characterisation is based on two main processes:
first, it is necessary to compute a mathematical representa-
tion of the contour shape (contour extraction) and second
a set of different descriptors is computed from this contour
representation (feature extraction).
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Fig. 1. Schematic diagram of the different steps required for computing the contour codification.

Extracting the contour from the original otolith image
involves different steps (Fig. 1). The first consists of
separating the otolith from other image structures (segmen-
tation) followed by making a representation of its silhouette
(binarisation). The second step consists of extracting the
boundary points of the silhouette and then tracking the bound-
ary from an initial point (codification). This process leads
to a linearised list of points, which depends on the selected
initial point and the form used for co-ordinate codification.
Examples of different types of codification are the direct form
of pair-co-ordinates (x[n],y[n]), using two real numbers for
each point, or the complex formulation x[n] + j · y[n] (where
j = √−1) which requires a single complex value for each
contour point.

Which features are chosen to classify the different con-
tours is particularly critical, because it can have a significant
impact on the final result. Indeed, the process of choosing
suitable features has often been identified as a more criti-
cal step than choosing the classification algorithms (Ripley
1996).

Although feature selection has been considered to be one
of the key aspects for automatic classification, it is important
to note that several features, some of them potentially dis-
criminant, are dependent on the selected contour extraction
process. This problem was not relevant in previous studies
involving otolith shape where the method for contour extrac-
tion was developed following the uniform criteria selected by
the authors. However, owing to the possibility of analysing

otolith datasets from different resources, it is important to find
general methods that can be applied to contours obtained with
different contour extraction and codification procedures.

This paper investigates to what extent several critical
points of this process affect the capacity to discriminate
the otolith shape, by using different types of morphologi-
cal, statistical, spectral and multiscale contour descriptors as
a reference.

Material and methods

Otolith orientation methods

In previous studies, the orientation of the otolith was standardised
according to different morphological criteria (Lombarte and Lleonart
1993; Campana and Casselman 1993; Cadrin and Friedland 1999;
Cardinale et al. 2004). In automatic recognition of otoliths obtained
from different sources, it is important to define objective (mathematical)
criteria for defining the orientation of the otolith contour.

A good candidate method for standardising contour orientation is
the Hotelling or Karhunen–Loève (KL) transformation (Hotelling 1933;
Karhunen 1946; Loève 1955), which is the mathematical basis of the
empirical orthogonal functions (EOF) and principal component analysis
(PCA). In this method, the covariance matrix of the co-ordinates is esti-
mated and its respective Eigenvectors are then used to define a new linear
transformation.This transformation minimises the covariance of the new
co-ordinates becoming perfectly uncorrelated. Depending on the orig-
inal orientation of the otolith, there are only two possible solutions in
which the co-ordinates are uncorrelated and the variance is maximised
along the x-axis. The human interaction is reduced to selecting from
these two possible representations. The advantage of this method is
that it provides an objective method for orienting the otolith contour,
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Fig. 2. Comparison of the contours obtained with Cartesian co-ordinates (in black) and the
reconstructed contours from Polar codification, showing the limitations of the reconstruction.

while providing the possibility of extracting different features from the
uncorrelated co-ordinates.

Contour codification

In the present study, two types of contour codification have been
analysed: Cartesian, both in the direct (x[n],y[n]) and complex
(x[n]+j · y[n]) form, and Polar (ρ[θ]). Although there are many alterna-
tive codification methods, such as polynomic approximations (Ramer
1972; Pavlidis 1973; Pavlidis and Horowitz 1974), electrical charge
distributions (Wu and Levine 1995), and non-linear algorithms (Zhu
and Chirlian 1995), the analysis has been restricted to those mentioned
earlier, as they are the most widely used in otolith research.

The main advantage of Polar codification is that it is possible to
obtain a one-dimensional representation of the contour, simplifying the
shape characterisation process.Another advantage is that there is a direct
conversion between Polar and Cartesian codifications

x[n] = ρ[n] · cos(θ[n])
y[n] = ρ[n] · sin(θ[n])

The conversion from Polar to Cartesian co-ordinates is important
in the cases that need to analyse data with heterogeneous codification
from different resources. However, as shown in the example in Fig. 2,
reconstructing the original shape from its Polar codification has some
limitations, especially in the cases where the otolith shape is complex
with conspicuous inclusions.

Feature selection for automatic classification

The design of a pattern classifier requires selecting a set of features
that best discriminate the pattern classes. The final performance of the
classification will depend on the classification algorithms selected. This
is a very difficult task for automatic classification as in many cases it
depends on the specific problem domain (Costa and Cesar 2002).

In order to simplify the analysis of the effects of the pre-processing
procedures, the features have been selected a priori, trying to cover the
maximum range of feature types. Four shape descriptor classes were
selected from among the most classical classes within otolith research:
morphological based, statistical (including fractal dimension), Fourier
descriptors and multiscale based. The potential performance of the clas-
sification based on a single feature was evaluated by using the class
separation distance (Castelman 1996). With this parameter, it is pos-
sible to evaluate the capability of discriminating two different classes
using a selected feature. If we have n different classes characterised with
m different features, the class separation distance (CSD) between the l
and k classes with respect to the m-th feature is defined as:

CSDl,k,m = |µl,m − µk,m|√
α2

l,m + α2
k,m

where µ and σ2 represent the mean and the variance of the m-th fea-
ture computed by using the samples associated with the l and k classes
(indicated with the corresponding subindex). The discrimination capa-
bilities of the selected feature increases with CSDl,k,m. The objective
of the present analysis is to determine which pre-processing procedures
maximise the class separation distance using the selected features as a
reference framework.

Morphological-based shape descriptors

The first selected set of features corresponds to general morphological
descriptors.

Perimeter

The arc length of the contour can be estimated by using different
approaches, depending on the type of codification (Costa and Cesar
2002). In direct co-ordinates it can be computed as:

P =
N−1∑
n=0

d(n,n − 1)

where

d(n,n − 1) =
√

(x[n] − x[n − 1])2 + (y[n] − y[n − 1])2

and d(0,−1) = d(0,N−1). In the case of complex codification u[n] =
x[n] + j · y[n],

P =
N−1∑
n=0

|u[n] − u[n − 1]|

where u[−1] = u[N − 1] and |u[n]| denotes the complex modulus.

Maximum chord

This is defined as the line segment joining the furthest points within
the contour. Taking into account the normalised orientation of the
contour, it is possible to derive different features from this line: the
co-ordinates (xmc0, ymc0, xmc1, ymc1) and the modulus (Mc).

Major and minor axes

The Hotteling transform provides the Eigen values of the contour
co-ordinates, which can be considered as additional morphological
descriptors. The major axis and minor axis are associated with the
maximum and minimum Eigen values.



808 Marine and Freshwater Research J. Piera et al.

Morphological ratios

Additional features can be computed between ratios of the features
defined above (Costa and Cesar 2002), such as the ratio between the
major and minor axis (known as the aspect ratio), the ratio between the
major axis and the perimeter and the ratio between the major axis and
the maximum chord.

Statistical and fractal shape descriptors

Mean and variance co-ordinates

Given the method for standardising the contour orientation, four
value types of mean and variance co-ordinates were evaluated. The first
type of statistical descriptor was global variance, which was computed
considering all the contour co-ordinates. Alternatively, different mean
and variances were estimated considering only subsets of contour co-
ordinates. Upward mean and upward variance were computed from co-
ordinates with positive ordinates (y[n] ≥ 0). Following a similar subset
selection, different mean and variances were defined: downward mean
and variance (from co-ordinates with y[n] < 0), right mean and variance
(co-ordinates with x[n] ≥ 0) and left mean and variance (co-ordinates
with x[n] < 0). Finally, different ratios from these descriptors were also
computed: upward–downward and right–left.

Fractal dimension

The fractal dimension of the otolith contours was also considered, as
fractal measures have been applied widely to different problems in image
processing analysis and pattern recognition (Peitgen and Saupe 1998).
The fractal dimension was computed by using the box counting algo-
rithm. This method is based on partitioning the shape image into square
boxes of size L × L and counting the number of boxes (n(L)) containing
a portion of the shape. By varying the box size L, the fractal dimension
is calculated as the absolute value of the slope of the line obtained from
the linear regression of the (log(L), log(n(L))) curve (Fig. 3).

Fourier shape descriptors

The mathematical background underlying the Fourier analysis theory
provides a large set of useful tools for shape analysis. In the present
analysis, the Fourier descriptors proposed by Granlund (1972) are
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Fig. 3. Illustration of the box-counting method for estimating the fractal dimension of the otolith contour.

considered, as they are one of the most popular shape representation
methods for vision and pattern recognition applications.

FD(s) =
N−1∑
n=0

u(n)e−j2πns/N, s = 0, . . . , N − 1

Shen et al. (1994) proposed a normalised version of Fourier
descriptors:

NFD(s)

{
0; s = 0
|FD(s)/FD(1)|; s �= 0

The normalised Fourier descriptors are invariant to translation, rotation,
parameter shifting and scaling. In the present study, however, it is not
necessary to compute the normalised descriptors, because the proposed
standardisation method based on K–L transformation provides also the
invariant property.

Curvature-based shape descriptors

The multiscale descriptor selected is based on the curvature estimation
at different scales. The curvature is one of the most important features
that can be extracted from contours. Formally, the curvature k(t) of a
contour shape (x(t), y(t)) is defined as:

k(t) = ẋ(t)ÿ(t) − ẍ(t)ẏ(t)

(ẋ(t)2 + ẏ(t)2)3/2

where the upper dot and double dot represent the first and second deriva-
tive respectively. The problem of estimating the derivatives of x(t) and
y(t) in computational shape analysis, where the contour is represented
in discrete co-ordinates, can be solved with different approaches. In
the present study, the discrete values of the curvature were computed by
using the derivative properties of the Fourier Transform (Papoulis 1962)
combined with a formula from differential geometry (do Carmo 1976).

Bending energy

One of the most important curvature-based measures related to shape
complexity is bending energy (Young et al. 1974). This global feature
is defined in a discrete form as:

B = 1

N

N−1∑
n=0

k[n]2
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where n is the total number of contour points. This measure, inspired
from elasticity theory, expresses the amount of energy needed to trans-
form a closed contour into a circle with the same perimeter as the
original one.

Multiscale bending energy

Curvature estimation is sensitive to noise and discretisation errors
because signal differentiation acts as a high pass filter that accentu-
ates the influence of high frequency noise. Introducing a low-pass filter
in the derivative estimation step can control this undesirable effect. A
common practice is to combine the Fourier-based numerical differentia-
tion process with a Gaussian low-pass filter, adjusting the bandwidth of
the filter using the Gaussian standard deviation, a (Costa and Cesar
2002). By using different values of the standard deviation, a (also
known as scale factor in this context), it is possible to define a series
of smoothed versions of the original contour. Several scale-dependent
curvature descriptors can be computed from this family of curves.
In the present study, the otolith contours were characterised with the
normalised multiscale bending energy (NMBE) defined as:

NMBE[a] = P2

N

N−1∑
n=0

k[a,n]2

Figure 4 shows an example of the graphical evolution of the gener-
ated contours, known as morphograms (Cesar and Costa 1997), and its
associated NMBE values at different scales.

Description of the matrix features

Four different feature matrices were computed according to the fea-
ture classes: morphological, fractal and statistical, spectral (Fourier
descriptors) and multiscale (bending energy).

• Morphological. 11 features: perimeter, max. chord, co-ordinates
max. chord (×4), major-axis, minor-axis, aspect ratio (major-axis/
minor-axis), max. chord/perimeter.
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Fig. 4. (a,b) Example of the morphograms computed from two different contour morphologies. (c,d) The
different features of these contours can be appreciated in their respective normalised multiscale bending energy
(NMBE) curves.

• Fractal and statistical. 27 features: fractal dimension, total variance
(×2), upward–downward mean and variance (×4), right–left mean
and variance (×4), and the corresponding rations (×16).

• Fourier descriptors. 256 features: 256 Fourier components.
• Multiscale. 64 features: normalised multiscale bending energy

computed at 64 different scales. The scales were selected within
the interval (10−0.8–10−0.7), using logarithmically equally spaced
criteria to obtain the different scale values.

Otolith dataset

The otolith dataset selected for evaluation purposes was obtained from
a collection of European hake, Merluccius merluccius (L.), from bio-
logical sampling performed monthly between September 1989 and June
1991 in the Mediterranean Sea (Recasens et al. 1998).

Following on from the study conducted by Recasens et al. (1998), six
different classes were defined according to the criteria of sex, maturity
and length. Table 1 summarises the features associated with each class.

Table 1. Features associated with the otolith dataset classes of
European hake Merluccius merluccius (L.) used to evaluate the

differences in contour classification

Class Sex Maturity stage Length No.
samples

I Undetermined Juvenile, 1st year <16 cm 24
II Male Juvenile, after (16–28.8) cm 18

1st year
III Female Juvenile, after (16–38.0) cm 25

1st year
IV Male Adult >28 cm 23
V Female Adult (38.0–60.0) cm 31
VI Female Adult >60 cm 9
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Fig. 5. (a) Overlapped contours obtained in the test of the orientation standardisation method. (b,c) Histograms
of the differences between the contour co-ordinates (in grey) and the contour reference (in black).

Results

Otolith co-ordinate standardisation

The first objective was to evaluate a KL-transform-derived
method as a tool for obtaining a final contour codification
that does not vary according to the position and orienta-
tion of the original shape. A set of 20 images of the same
otolith with different orientations and resolutions (images
from 140 × 190 up to 780 × 780 pixels), was obtained to
test the method. The orientation of the different images was
standardised by using an automatic algorithm that applies
the KL-transform, and an interactive programme to check
this orientation. An automatic procedure computed the same
origin reference (x > 0, y = 0) for each image, and then a
total of 512 points were obtained interpolating the original
contour co-ordinates.As different image resolutions yield dif-
ferent co-ordinate values, it was necessary to normalise the
co-ordinates. For this purpose, the interpolated points were
normalised to (x[n],y[n])′ = (x[n]/max(x[n]),y[n]/max(x[n])).

From this set of normalised contours, the error posi-
tion of 9728 co-ordinate-pairs was evaluated. The reference
contour was obtained from the highest resolution image.
Figure 5 shows the graphical result of overlapping the 20
different normalised contours and the histograms corre-
sponding to errors in x-co-ordinates (90% error confidence
interval (−0.0156, 0.0165)) and y-co-ordinates (90% con-
fidence interval (−0.0127, 0.0136)). Taking into account
the normalised process, the error intervals indicate that the
co-ordinate errors can be considered to be below 1% of the
full scale.

Comparing the discriminant capacity using Cartesian
and Polar codification

Two different sets of feature matrices were obtained by using
Cartesian and Polar contour codification.The effect of choos-
ing different types of codification methods could be seen in
many features, as shown in Fig. 6, where the information lost
in relation to shape inclusions, resulted in lower normalised
multiscale bending energy values.

The class separation distance (CSD) was obtained for all
features and classes yielding a total of 358 (6 × 6) square
matrices. Statistics (mean, maximum and minimum CSD val-
ues) were computed for each matrix in order to determine
the features with the highest potential for discrimination. In
general, the features obtained from the Polar converted co-
ordinates had higher associated CSD values.This trend can be
observed in the plots in Fig. 7, in which the minimum, maxi-
mum and mean CSD values are represented for all the feature
types. In order to simplify the visual comparison, the features
were sorted, obtaining a monotonic increasing curve for the
mean CSD values associated with the Cartesian codification.

Table 2 summarises the differences obtained in Fig. 7,
identifying for each type of shape descriptor, the parameters
with the highest potential to be used for discrimination pur-
poses. In each case, the three descriptors with the highest
mean CSD values were included.

Discussion

One of the surprising results is that, although information is
lost in Polar codification, the higher associated CSD values
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two codification methods.

Table 2. Summary of the class separation distance (CSD) values obtained with Cartesian and Polar converted co-ordinates
The table includes the features with the highest mean CSD values computed from the four feature types

Cartesian codification Polar codification

Morphological feature Aspect ratio 0.783 Aspect ratio 1.036
Max. chord/perimeter 0.663 Max. chord/perimeter 1.027
Major axis 0.656 Perimeter 0.772

Fractal and statistical Variance downward y-co-ordinate 0.928 Variance downward y-co-ordinate 0.926
Mean downward y-co-ordinate 0.780 Mean downward y-co-ordinate 0.886
Mean upward x-co-ordinate 0.738 Variance right x-co-ordinate 0.787

Spectral (Fourier descriptors) FD5 0.589 FD4 0.8116
FD44 0.580 FD1 0.7964
FD42 0.562 FD2 0.6429

Multiscale (normalised NBE64 0.638 NBE62 0.773
multiscale bending energy) NBE63 0.637 NBE63 0.771

NBE62 0.634 NBE61 0.767

seem to indicate that this codification method could be better
than the Cartesian method for classification purposes.

However, the CSD is a relatively simple parameter that has
been used to evaluate the potential discrimination capacity of
a single parameter and compare different codification meth-
ods. It is also important to note that this improvement does not
allow us to use a single feature for classification, as in most
cases, the minimum CSD is nearly zero, indicating its low
capacity for discriminating some classes. It has been shown
in many studies (Cardinale et al. 2004) that otolith classifica-
tion is a difficult task that requires complex statistical tools
and the combination of several features.

In order to evaluate the effect of using different codifi-
cation methods with more complex statistical techniques,
a linear discriminant function (Rao 1973) was performed.
Tables 3 and 4 summarise the numerical results obtained with
the Cartesian and Polar codification methods. The results
show that discriminant analysis with Cartesian co-ordinate

contours provide better results (90% of the total correct classi-
fications) than the analysis performed with Polar co-ordinates
(88.46% of the total correct classifications).

The discriminant analysis was also performed by using
only Fourier descriptors, as they are the most popular features
in the field of otolith research. This second comparison was
performed in order to evaluate the benefits of including new
descriptors in otolith classification. In this second analysis,
and for both codification methods, the total of correct classi-
fications was lower (87.69% for Cartesian co-ordinates, and
86.92% for Polar co-ordinates). The differences from the first
analysis indicate that the alternative descriptors presented in
the present study provide new capabilities for classification.

Future applications

Distributed open data are emergent resources that can be very
useful in future otolith research. When using otoliths from
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Table 3. Classification results obtained with linear discriminant analysis using Cartesian co-ordinates
Wilks’ λ: 0.00613 approx. F (270,359) = 2.3691, P < 0.0000

Percentage Class I Class II Class III Class IV Class V Class VI
correct P = 0.185 P = 0.138 P = 0.192 P = 0.177 P = 0.238 P = 0.069

Class I 100.00 24 0 0 0 0 0
Class II 83.33 1 15 2 0 0 0
Class III 88.00 0 2 22 1 0 0
Class IV 91.30 0 0 1 21 1 0
Class V 90.32 0 0 0 3 28 0
Class VI 77.78 0 0 0 1 1 7
Total 90.00 25 17 25 26 30 7

Table 4. Classification results obtained with linear discriminant analysis using Polar co-ordinates
Wilks’ λ: 0.00984 approx. F (270,359) = 2.0337, P < 0.0000

Percentage Class I Class II Class III Class IV Class V Class VI
correct P = 0.185 P = 0.138 P = 0.192 P = 0.177 P = 0.238 P = 0.069

Class I 100.00 24 0 0 0 0 0
Class II 88.89 1 16 0 1 0 0
Class III 92.00 0 1 23 1 0 0
Class IV 73.91 0 1 2 17 3 0
Class V 90.32 0 0 0 2 28 1
Class VI 77.78 0 0 0 0 2 7
Total 88.46 25 18 25 21 33 8
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different databases, the differences in otolith contour descrip-
tion can be a potential problem for comparing their respective
features. Neither otolith orientation nor image resolution is
a serious problem as it is possible to compute normalised
positions with relatively low error using the method proposed
here. However, data conversion from different codification
methods may affect the final result. In this sense, it is neces-
sary to establish some type of standard format that allows the
use of distributed data as a regular procedure.

Establishing a standard data format for otolith images
could be one of the most important issues for future appli-
cations facilitating the exchange of data between differ-
ent otolith databases. New descriptors can be developed
to improve automatic classification methods. One type of
promising descriptor is based on local singularities of the
contour. These singularities can be related to landmark selec-
tion defined by expert taxonomists, who manually obtain
morphological features for classification. Signal processing
techniques related to local characterisation, such as Wavelet
Transform and Curvature Scale Space representation (Parisi-
Baradad et al. 2005) could provide these descriptors. The
presence and position of particular singularities can be one of
the most important sources of otolith characterisation. These
singularities can be characterised by the Lipschitz–Hölder
exponent, a parameter related to local regularity that can be
obtained from Wavelet Transform (Jaffard 1992).

The possibility of normalising the otolith contour position
provides additional advantages for this type of technique. It
facilitates the comparison of the singularities between differ-
ent contours and creates the possibility of developing new
methods of fast automatic classification based on detecting
contour singularities.
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